Multi-zone Catalytic Cracking: A new platform for Crude to Chemicals in single step

Sukumar Mandal
Any statement, opinion, prediction, comment, or observation made in this presentation/publication are those of the presenter/author only and in no condition should be construed necessarily representing the policy and intent of Reliance Industries Ltd. (RIL).

The information presented herein are of the presenter/author’s own and in no way RIL attracts any liability for any inconsistency or irregularity in terms of the accuracy completeness, veracity, or truth of the content of the presentation/publication. In addition, RIL shall not be liable for any copyright infringement and misrepresentation for the presented content as the content is presumed in good faith to be a creation of presenter’s/author’s own mind.

The scope of this presentation/publication is strictly for knowledge sharing purposes and not necessarily to provide any advice or recommendation to the audience/readers. Any endorsement, recommendation, suggestion, or advice made by the presenter/author shall be in his personal capacity and not in professional capacity as an employee of RIL. Any person acting on such endorsement, recommendation, suggestion, or advice will himself/herself be responsible for any injury/damage.
Index

1. MCC Process
2. MCC Novel features
3. MCC Cracking principle
4. Zone Suitability
5. Catalyst
6. MCC Application: Deeper Integration
7. Direct Crude Cracking: MCC vs other Option
8. MCC in existing Refinery configuration
9. MCC: Demonstration
10. MCC Economic
11. MCC: IP position
12. Conclusion
MCC Process: Innovative Concepts

- Sequential multi-zone cracking in one riser

- Synergistic combination of Light feedstock (C₄, Naphtha) with Heavy feedstock (CSO, crude) to achieve heat balance

- Utilize exothermic heat of Methanol cracking (optional), taking advantage of cheap and stable price of Methanol

- Utilize high activity stable ZSM-5 of RIL to achieve maximum Propylene and Ethylene; Optimum catalyst formulation for the feedstock to be processed

- Optimum design of each zone variables; zone temp & composition drive closer to equilibrium, allowing high P+E yield in single riser

- Use of all paraffinic + olefinic lighter cut as recycle to MCC riser.

MCC patented based on the above innovative concepts

© Reliance Industries Ltd., 2018
Novel feature

• **Feed Flexibility**
 - Olefinic C\textsubscript{4} from FCC/DCU - C\textsubscript{3}/C\textsubscript{4} Splitter bottoms
 - Olefinic naphtha - Light and Heavy Coker Naphtha
 - Straight run naphtha - C\textsubscript{6}/C\textsubscript{7}
 - MCC C\textsubscript{4} and non aromatic naphtha recycle
 - CSO

• **Optional feedstock**
 - FCC Light naphtha
 - Opportunity crude - High TAN, Nitrogen, metals except V
 - Hydrocracker bottom
 - Methanol - attractive feedstock due its cheaper & stable price
 - Customized catalyst formulation for high olefins in product
Product Flexibility

- E+P maximization
- E+P+ C₄ olefin maximization
- E+P+C₄ + Gasoline maximization
- Various product objective can be made by varying operating conditions, catalyst composition and feed stock quality

Processing

- Sequential multizone cracking in one riser
- Optimized 4 reactor riser zones
- Optimum cracking temperatures, based on feed pre-heat
- Select zone variables to drive cracking process towards equilibrium
- Opportunistic recycle

Heat balance

- Synergistic combination of light and heavy feedstock
- Utilize exothermic heat of methanol cracking

⇒ **MCC = FCC of the future**
Methodology

• **ACE**
 - 350+ runs
 - Screening of feed + catalyst

• **Jamnagar pilot plant**
 - 100+ runs
 - High fidelity results mapping commercial Jamnagar FCC performance
 - Multiple feeds, up to 3 co-feeds
 - Optimize operating variable for each MCC zone

• **Catalyst**
 - Customize for feed + operations
 - Tailor to processing + product objectives

• **Demonstration**
 - Proof-of-concept with coker naphtha processing in SEZ FCC
 - Results as predicted by MCC, corrected for constraints

⇒ MCC = Demo-ready
• Optimum cracking temperature: LCN - 620°C & N-Hexane - 675°C
• Need to provide optimum cracking condition depending on the feedstock crackability
• Temp in each zone controlled by feed preheat temp thru feed furnace
• Regen temp & delta coke controlled by heavy fraction feed rate & slurry recycle rate

⇒ Optimize cracking
MCC zones

<table>
<thead>
<tr>
<th>Zone</th>
<th>Temp °C</th>
<th>WHSV, /hr</th>
<th>Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>570 – 600</td>
<td>150 – 200</td>
<td>Low</td>
</tr>
<tr>
<td>3</td>
<td>600 – 640</td>
<td>100 – 150</td>
<td>Moderate</td>
</tr>
<tr>
<td>2</td>
<td>630 – 650</td>
<td>50 – 100</td>
<td>High</td>
</tr>
<tr>
<td>1</td>
<td>640 – 680</td>
<td>1 – 10</td>
<td>Super high</td>
</tr>
</tbody>
</table>

• **Riser**
 = Divide in to 4 processing zones
 = Select appropriate feed to route to cracking zones
 = Prevent over-cracking + under-cracking

• **Zone**
 = Dedicated feed injection
 = Feed preheat to control temperature
 = Target desired cracking severity

• **WHSV**
 = Changed with riser dimension + dilution steam-flow
 = Locate appropriate feed injection points

⇒ **MCC = Reactor – Riser with optimal zone cracking**
Zone Suitability

<table>
<thead>
<tr>
<th>Zone</th>
<th>Feed</th>
<th>Rationale</th>
<th>Severity</th>
<th>Feed Crackability</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Methanol, DME</td>
<td>Light Olefins+ heat balance</td>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>CSO, Crude, DAO, LR & VR</td>
<td>Light Olefins + heat balance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>VGO, Olefinic naphtha</td>
<td>Easy to crack</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Recycle naphtha, Lt SRN, Lt & Hv Condensate/Tight oil</td>
<td>Paraffinic naphtha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>C<sub>4</sub></td>
<td>Difficult to crack</td>
<td>H</td>
<td>L</td>
</tr>
</tbody>
</table>

- Segregate feed to match cracking propensity
- Crack VGO + naphtha in a single riser
- Distress Feed streams such as olefinic naphtha
- Feed methanol to match exotherms

⇒ **Ultimate feed cracking flexibility in a single riser**

© Reliance Industries Ltd., 2018
In spite of single riser cracking, MCC \(C_3= \) yield is close to thermodynamic equilibrium limit of light olefins, due to

- Higher riser temperature allowing shift of equilibrium and substantial cracking paraffinic naphtha
- Substantial cracking of C4, C5 and higher olefin precursors at the bottom of riser
- Optimum condition for each zone to maximize \(P + E \) depending on crackability of each feed streams
• **Optimized catalyst + additive mix**
 — To cater Feed composition (light : heavy : oxygenate) variation
 — Balance gasoline vs light olefin yield

• **ZSM-5 additive (RIL patented)**
 — More stable formulation with higher P + E
 — Metal modified for lower DG yield

• **Y zeolite catalyst**
 — Heavy feed

• **Catalyst objectives**
 — Minimize dry gas (H₂ & Methane) & coke
 — Maximize C₂=, C₃=, for petrochemicals
 — Maximize C₄= for alky feed /petrochemicals if desirable
 — Maximize BTX for aromatics

⇒ **Tailored catalyst formulation for petrochemical engine**
Effect of ZSM-5 zeolite stabilization

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ZSM 5 crystal content, wt.%</td>
<td>B</td>
<td>B</td>
<td>B-10</td>
</tr>
<tr>
<td>Feed</td>
<td>LCN</td>
<td>LCN</td>
<td>LCN</td>
</tr>
<tr>
<td>Reactor Temperature, °C</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Catalyst-to-Oil, wt./wt.</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
</tbody>
</table>

Yields, wt.%: ACE data, per pass

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry gas(excluding ethylene)</td>
<td>B</td>
<td>-1.5</td>
<td>+0.5</td>
</tr>
<tr>
<td>Ethylene</td>
<td>B</td>
<td>-1.9</td>
<td>+1.3</td>
</tr>
<tr>
<td>Propylene</td>
<td>B</td>
<td>+0.7</td>
<td>+1.2</td>
</tr>
<tr>
<td>LPG</td>
<td>B</td>
<td>-1.6</td>
<td>+2.5</td>
</tr>
</tbody>
</table>

- Compared to commercial additive, RIL’s ZSM 5 additive gives higher yield of light olefins P+E
- Metal doped ZSM 5 additive produces propylene yields comparable to comm add, but additionally reduces yield of ethylene & dry gas.

© Reliance Industries Ltd. 2018
MCC vs other catalytic cracking technologies

⇒ MCC = Enormous feedstock flexibility

© Reliance Industries Ltd., 2018
MCC Applications = Deeper Integration

Refinery
- **Upgrading low value refinery streams** e.g. LCN, HCN, VBN, Condensate, CSO, Resid to high value Petchem feedstock – Light olefins, BTX, Heavy Aromatics.

- **Crude to Olefins** – Direct cracking of crude in one riser, no CDU/VDU/Flashing. Also combined cracking of condensate, shale oil, tight oil etc. along with Crude. About 120 crudes across world have been scanned as suitable for direct processing in MCC.

- **Gasoline Quality** – Limited cracking of Gasoline streams to reduce olefin content while increasing light olefins production.

- **Synergy with Other Bottom Upgradation** Projects e.g. Resid HC and SDA by processing heavier streams produced from these units to light olefins.

Petchem
- **MCC integration with SC** – Cracking of SC C₄, C₅-C₈ olefinic raffinates and Py tar in MCC riser while SC can crack C₃ and C₄ paraffins from MCC. In SC, ethane as feed, SC propylene production drops, which can be enhanced easily by adopting MCC.

- **Methanol / DME cracking** in MCC riser & Integrate to SC.
MCC Integration in Refinery

MCC = Max refinery + petrochemical integration
Comparison of MCC with Steam Cracker

<table>
<thead>
<tr>
<th>Product</th>
<th>LCN</th>
<th>Crude</th>
<th>Lt SRN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MCC+</td>
<td>MCC+</td>
<td>SC</td>
</tr>
<tr>
<td>Ethylene</td>
<td>24.8</td>
<td>20.5</td>
<td>34.0</td>
</tr>
<tr>
<td>Propylene</td>
<td>40.5</td>
<td>33.0</td>
<td>18.0</td>
</tr>
<tr>
<td>BTX</td>
<td>18.5</td>
<td>11.5</td>
<td>12.7</td>
</tr>
<tr>
<td>Life cycle cost</td>
<td>B-100~150</td>
<td>B-200~300</td>
<td>B</td>
</tr>
<tr>
<td>Payback, yrs</td>
<td>C-0.5~0.8</td>
<td>C-1~1.5</td>
<td>C</td>
</tr>
</tbody>
</table>

Economics Superior economics in MCC arising from following benefits
- MCC handles olefinic feed directly whereas SC requires hydrotreating
- Direct crude cracked in MCC + recycling of naphtha streams in bottom zone of riser, producing higher yield of light olefins
- Lower dry gas yield in MCC (5%) vs SC (18%)
- Good heat balance in MCC, coke from heavy & exothm of methanol, Low feed + Eng cost
- Large scale MCC plant vs multiple furnace in SC => lower capex
=> Strong MCC economics from lower feed price and superior yields
Patents

• **Patents on MCC**
 - Granted : US9550708B2, Australia (2012369895) & Singapore (11201404889T)
 - India : 270880
 - USA : 8685232 (two zone)
 - Pending : in Japan & Europe

• **Patent on FCC additives**
 - India : 268048
 - USA : 9067196
 - Japan : 2014-520792
 - Nigeria : NG/C/2014/013

• **Patent on Enhanced Propylene & LPG Recovery**
 - USA : 8618344

⇒ **Full Freedom to Operate (FTO) for MCC**
Conclusion

— MCC is a new process developed for cracking of diverse hydrocarbon streams in sequential manner in a single riser to make substantial
 ▪ Propylene (> 30wt %)
 ▪ and Ethylene (>18wt %)
 ▪ BTX (15%).
— This is alternate to SC, but for feedstock, SC can not handle
Thank You