‘IndianOil’ Novel High Activity Ziegler-Natta Catalyst for Polyethylene and Polypropylene

Dr. G S Kapur
kapurgs@indianoil.in
Research & Development Centre
Indian Oil Corporation Limited
INDIA

20th International Conference
INDIAN Petrochem – 2018

November 1, 2018
Any statement, forecast, opinion, comment or observation made in this presentation are solely personal of presenter and in no condition should be read representing as those of Indian Oil Corporation Ltd. (IOCL)
Challenges - PP Catalyst

• Catalyst is the Heart- PP technology revolves around the catalyst
• Producers heavily dependent on technology licensors at their terms and pricing
• Entry of 3rd Party suppliers difficult due to Licensing Agreements
• Interruptions in catalyst supply leads to plant s/d - Huge financial loss
• IPR – Entry Barrier for Indian innovators
• Limited availability of raw materials - Market controlled by few MNCs

Strategic to Develop Indigenous PP Catalyst Technology
PO Catalyst @ IOCL

IndianOil - 2nd Largest producer of PE/PP in India

<table>
<thead>
<tr>
<th>Catalyst@IOCL</th>
<th>Capacity KTA</th>
<th>Annual Consump (MTA)</th>
<th>Approx Cost (INR, Crores)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polypropylene</td>
<td>600</td>
<td>17</td>
<td>60</td>
</tr>
<tr>
<td>Polyethylene</td>
<td>650</td>
<td>15.5</td>
<td>38</td>
</tr>
</tbody>
</table>

Another 700KTA PP Capacity – Under commissioning
Two more capacities Planned (450 KTA and 200 KTA)

<table>
<thead>
<tr>
<th>Catalyst Producers</th>
<th>Catalyst Precursor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lyondell-Basell</td>
<td>MgCl₂.xROH</td>
</tr>
<tr>
<td>Grace (DOW/BASF)</td>
<td>Mg₃Ti(OEt)₃Cl₂, MgCl₂.xROH</td>
</tr>
<tr>
<td>Mitsui</td>
<td>MgCl₂.xROH</td>
</tr>
<tr>
<td>Ineos</td>
<td>Mg(OR)₂.xCO₂</td>
</tr>
<tr>
<td>Borealis</td>
<td>BOMAG</td>
</tr>
</tbody>
</table>

Magnesium Precursor is the Core Technology in ZN Catalyst Value Chain

IOCL Target
Novel Precursor
No Dependence on Exotic Raw Materials
ZN Catalyst Synthesis Philosophy

Off-the-Shelf Available Raw Materials

Catalyst Precursor-1

Catalyst Precursor-2

PP Catalyst

Designing of Multiple Catalyst Precursor – Providing Flexibility
Design of Precursor-1 (Solid)

Attributes

Precursor Processing
- Single-pot Synthesis
- Re-crystallize Precursor
- Precipitated Precursor
- Dissolved Precursor

Precursor Yield
- 100% Conversions

Precursor Composition
- Tunable Composition
- Reproducible Composition

Premature Patented Chemistry – Achieving Desired Targets
Design of Precursor-2 (Liquid)

Mg \xrightarrow{RX} Mg(OR')$_2$ + RMgX* $\xrightarrow{R'OH}$ MgX$_2$.nR’OH $\xrightarrow{R'OH}$ MgX$_2$ + R$_2$Mg* $\xrightarrow{R'OH}$ Mg(OR')$_2$ $\xrightarrow{R'OH}$ Mg(OR')X

{Mg(OR')X}.a{MgX$_2$}.b{Mg(OR')$_2$}.c{R’OH}

Attributes

Stability of Precursor
• No precipitation for last 24 months

Precursor Processing
• Single-pot Synthesis
• Single-step synthesis

Precursor Yield
• 100% Conversions

Precursor Composition
• Tunable Composition
• Reproducible Composition

Novel Patented Chemistry – Achieving Desired Targets
Design of Precursor

Designed Precursor Through Reaction Profile Control

Perfection/tuning of catalyst through perfecting precursor synthesis
Catalyst Composition

• Mg – Complexometric Titration
• Ti – UV-Vis Analysis
• ID – DIBP Quantified using in-house method based on UV-Vis

1. Catalyst hydrolyzed
2. DIBP extracted in solvent
3. DIBP Quantified

Internal Donor – HPLC analysis revealed single species i.e. DIBP

Desired Catalyst Composition Achieved
Catalyst Characterization
XRD & BET Surface Area

PANalytical Empyrean

Crystallite width calculated from the diffraction peak at 50.28°; corresponding to (110) planes of α-MgCl₂ and β-MgCl₂, and to the (018) plane of α-MgCl₂.

Crystallite Size in the Range of 40-60Å

Surface Area = 350-400 m²/g

Achieving Desired Microstructure
Catalyst Characterization
Particle Size Studies

Mean Diameter can be tuned from 10µm to 40µm

Narrow & Tunable Particle Size Distribution According to End Use Technology
PP Catalyst Performance

Donor Response

<table>
<thead>
<tr>
<th>Donor</th>
<th>Productivity (Kg PP/g Cat)</th>
<th>XS (wt%)</th>
<th>MFI (g/10min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-Donor</td>
<td>13.3</td>
<td>5.3</td>
<td>6.2</td>
</tr>
<tr>
<td>NPTMS</td>
<td>11.1</td>
<td>4.5</td>
<td>6.5</td>
</tr>
<tr>
<td>NPTES</td>
<td>9.2</td>
<td>4.3</td>
<td>4.3</td>
</tr>
<tr>
<td>DPDMS</td>
<td>12.2</td>
<td>4.8</td>
<td>2.5</td>
</tr>
</tbody>
</table>

C-Donor: Cyclohexylmethyl dimethoxysilane
NPTMS: n-Propyl trimethoxy silane
NPTES: n-Propyl triethoxy silane
DPDMS: Diphenyl dimethoxy silane

Compatibility of Catalyst Systems Across Different External Donors
Morphology, PSD & Isotacticity

Regular Morphology

Narrow Particle Size Distribution

Nil resin in the Pan

NMR Isotacticity

mmmmm Content in the range of 85-87%

Desired PP Morphology and Microstructure Achieved
Third Party (Norway) @ 17L Scale
2 IOCL Catalysts evaluated against reference commercial catalyst

Granular PP Morphology

Desired Performance Achieved with IOCL Catalysts
Better Donor Response Obtained with IOCL Catalysts
REACH-Compliant Internal Donor

Registration, Evaluation, Authorisation and Restriction of Chemical substances (REACH) – EU Regulation

- **Conventional High Yield-High Stereospecific ZN catalyst - Di-isobutyl Phthalate as Internal donor**
- **DIBP is listed in authorization list as per REACH**
REACH Compliant Non-Pthalate Donors for PP

IOCL ID coupled with IOCL patented precursor provides niche grade of PP
Phthalate Free Niche PP

- Ex-reactor Fractional MFI PP
- No penalty on throughput of reactor
- Catalyst gets activated even at low hydrogen concentration

Enabling Production of Niche PP Grades
Molecular Modeling
Design of Internal Donor

Computer-aided Donor design uses Computational Chemistry

From In Vitro to In Silico Development

Effective Donors
PE catalyst Elemental Composition

Elemental Composition wt%

Stable Elemental Composition Achieved
PE Catalyst
Product Evaluation

MFI @ 21.6 Kg; H2 @ 1 bar
In-house > Cat-1 > Cat-2 > Cat-3

MFI @ 2.16 Kg/5Kg; H2 @ 1 bar
In-house > Cat-1 > Cat-2 > Cat-3

Exceeding Benchmark Hydrogen Response
Flow Rate Ratio:
In-house ≈ Cat-1 ≈ Cat-3 > Cat-2

Density of PE samples

Achieving Targeted Composition and Performance at Minimum TiCl₄
In-house catalysts are superior with respect to productivity and hydrogen response.

PE catalyst independently evaluated and validated by Third Party (abroad).
Establishing Versatile Precursor and Catalyst Platform
<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP Catalyst</td>
<td>• Commercial catalyst equivalent activity</td>
</tr>
<tr>
<td></td>
<td>• Superior hydrogen response</td>
</tr>
<tr>
<td></td>
<td>• Desired donor response</td>
</tr>
<tr>
<td>PE Catalyst</td>
<td>• ~30% Higher catalyst activity over commercial benchmark catalyst</td>
</tr>
<tr>
<td></td>
<td>• Superior hydrogen response</td>
</tr>
<tr>
<td></td>
<td>• Lower fines levels</td>
</tr>
<tr>
<td></td>
<td>• Better resin morphology</td>
</tr>
</tbody>
</table>
9 Patent Families / 65 Patents Covering Synthesis of Novel Magnesium Precursors & Subsequent Ziegler-Natta Class of Catalysts and Internal Donors filed to Protect IOCL Innovation
Conclusions

- Robust catalyst precursors developed using extensive parallel and automated process
- Both the Precursors established for synthesis of high productivity Ziegler-Natta catalysts
- Both PP and PE catalysts provided excellent performance and desired product characteristics
- Third party evaluation of catalysts established performance of both PP & PE catalyst systems
- REACH compliant catalyst chemistry – Niche PP products (Fractional MFR and Broad MWD)
- Formidable (>65) Patent portfolio by IOCL

The Catalyst Recipe is under Scale up / Commercialization
Polyolefin R&D at IOCL

Set up in 2010
Focus on Development of Indigenous Products, Processes & Technologies
Thank You All